
CFF Explorer's Scripting Language
V1

Introduction
The Lua Language: Brief Guide
CFF Explorer's Modified Lua
 Bit Operators
 Other Operators
 0-Based Arrays (Or Tables)
 C# Strings
 Definitions
How It Works
Security Issues
Code Samples
 PE Resources
 Easy PE Editing
 Advanced PE Editing
 Generic Patches
 PE Reports
 Extension Setups
Functions Reference
 General
 Portable Executable
 Win32
Conclusions

Introduction

The first version of this scripting language was introduced in the CFF Explorer VII. The initial
idea was a very simple one: offering a basic command line support to modify resources in a
Portable Executable, just like Resource Hacker. The command line / script support was
requested by a community of people who needed it for their software to change some Windows
resources. After bouncing a little bit the idea in my head it evolved into a bigger project:
providing a scripting language to do most PE tasks.

The first two possibilities I came up with were Python and Lua. Initially, I thought Python
would've been a little too much for a PE editor; it seemed to me that it would've been like
opening a door with a panzer. However, I might have been wrong. In fact, a lot of tools like
IDA are opening up to Python and my choice might have been a misjudgement. Anyway, the
Lua language is not very different in its syntax from Python. So, at least, it'll be easy for
Python programmers to use it.

For this is the first version of this scripting language, I have no idea if people will like it. Even if
it'll turn to be useless, I think it's an interesting feature, and, even though time consuming and
sometimes not so easy, it was fun adding it to the CFF Explorer.

The Lua Language: Brief Guide

Lua is a very easy language to learn. This paragraph is absolutely not an extensive guide about
Lua, rather a brief description of its main features. If you want to learn more about the
language, you can visit Lua's documentation page. Keep in mind that there are a few

http://www.lua.org/
http://www.lua.org/docs.html

differences between the standard Lua and the one I implemented in the CFF Explorer, so check
out the paragraph about the differences.

I think the reader will eventually be surprised by Lua, which, despite of being a small
language, is very powerful. It takes quite a bit of time to discover all its features and
possibilities. This paragraph should give developers a basic idea of how to write simple scripts
in Lua, but for more advanced topics consult the online documentation or one of the several
books (yes there are quite a few) written about the Lua language.

First of all, this language is case sensitive. Thus, you can't call the function "msgbox", when, in
fact, it ought to be written "MsgBox".

The version of Lua implemented in the CFF Explorer supports 64bit numbers. This factor was
very important regarding the language choice. A language without 64bit number support
would've been unfit for the tasks it's supposed to accomplish.

Here's a little 64bit-numbers test script:

var = 0xFFFFFFFFFFFFFFFF - 0xFFFFFFFF00000000

if var == 0x00000000FFFFFFFF then
 MsgBox("OK 1")
end

var = 0xF000000000000000
var2 = 0xF100000000000000

if var2 > var then
 MsgBox("OK 2")
end

As you can see, the hex numbers syntax is exactly the same as in C-like languages. From the
script above you can also notice that Lua's variables are not declared with a fixed type, but
just like in Python can assume any possible type:

var = "string"
var = 4
var = true

This is called dynamic typing. One thing I like about Lua is that it doesn't rely on indentation
like Python: all code blocks are terminated by the word "end".

Lua supports arrays (or tables as they call them). A table can contain any type of data:

var = { "hello", 3, true }

Tables are made of the data itself and the key to access this data. In the example above no
key is specified. Thus, a default keys is assigned to all members: a number. To access one of
the members of the table above just write var[n]. In Lua tables are 1-based, although in the
CFF Explorer implementation of Lua this isn't the case. This is one of the things listed in the
next paragraph explaining the differences about standard Lua and the one implemented in the
CFF Explorer.

Keys can be either number or strings:

var = { ["param1"] = true, ["param2"] = false, ["param3"] = true, ["param4"] =
true }

To change the first item of this table I write:

var["param1"] = false

However, I don't think that keys are very important for the CFF Explorer scripting, since most
of the tasks I can think of involve byte arrays. Another little thing about tables: to get the size
of a table just put the # (size) operator before the table's name:

MsgBox(#var)

This will print the number of rows in the table var.

To comment something in Lua use this syntax:

-- This is a single-line comment

Lua also offers multi-line comments:

--[[
 This is
 a multi-line
 comment
]]

Concetenating strings is very easy:

MsgBox("This is " .. "a string!")

You can also concatenate a string to a number in the same way:

MsgBox("The number of items is: " .. n)

Here is a list of the Lua language key words:

and break do else elseif
end false for function if
in local nil not or
repeat return then true until while

And here is a code sample that shows some common code blocks:

var = 1000
var2 = true

-- if

if var == 1000 then
 -- code
end

-- if / elseif / else

if var == 1000 then
 -- code
elseif var == 1001 or var == 1002
 -- code
elseif var == 1004 and var2 == true
 -- code

else
 -- code
end

-- while

local n = 0

while n < var do
 -- code
 n = n + 1
end

-- repeat / until

n = 0

repeat
 if var2 == false then
 break
 end

 n = n + 1
until n < var

-- for (exp3 default)

for n = 0, var do
 -- code
end

-- for (exp3 explicit)

for n = 0, var, 2 do
 -- code
end

-- for (array iteration)

gen = { 10, 20, 30, 40 }

for i = 0, #gen - 1 do

 MsgBox("Key: " .. i .. " Value: " .. gen[i])

end

I think the only block which needs a bit of explanation is the for loop. The syntax of the for
statement is: for exp1, exp2, exp3 do. Every value of exp1 must reach exp2 using exp3 as the
step to increment exp1. exp3 is optional, if no step is specified, the default step value is 1.

Also, in Lua it doesn't make any difference if you write:

for n = 0, #gen - 1 do

 MsgBox("Key: " .. n .. " Value: " .. gen[n])

end

Or:

for n = 0, #gen - 1 do MsgBox("Key: " .. n .. " Value: " .. gen[n]) end

It's just a coding style issue.

In the above example you've seen making use of the key word "local". You can use "local" to
declare variables which are going to be valid only the scope of the current function / block.

do

 local var = 0

 -- code

end

The variable var does not exist outside this do-block. By the way, do-blocks can be used as in
the example above to have a better overview of local variables.

Let's see how to use a function:

function add1(num)
 return num + 1
end

function add2(num1, num2)
 return num1 + num2, num2 + 1
end

local var = 1

-- prints "1"
MsgBox(var)

local var2 = add1(var)

-- prints "1 and 2"
MsgBox(var .. " and " .. var2)

var, var2 = add2(var, var2)

-- prints "3"
MsgBox(var)

As I said before, you will be impressed by the power of Lua. As shown in the example above,
you can return more than just one value in a function's return. And not only that: Lua supports
a variable number of arguments in its functions. Here's an example:

function multibox(...)
 for i = 1, #arg - 1 do
 MsgBox(tostring(arg[i]))
 end
end

multibox("ciao", "ecco")

After reading this short paragraph, I believe, every developer has entered the Lua logic and is
able to write some simple scripts.

CFF Explorer's Modified Lua

As mentioned in the previous paragraph, the Lua implemented in the CFF Explorer doesn't
respect the standard implementation. I modified / added quite a few things. Most of the
changes were, in my opinion, necessary in order to make the language easier for C/C++
developers and for the task it is supposed to fulfil. I'm going to summarize the main
differences between the standard and this implementation of Lua in very brief chapters.

Bit Operators

CFF Explorer's Lua has all C/C++ bit operators:

• & (and)
• | (or)
• ^ (xor)
• << (shift left)
• >> (shift right)
• ~ (not)

Notice that the ^ operator in standard Lua stands for power and is followed by the exponent.
Since I introduced C/C++ bit operators, I thought it was more important to have a normal xor,
than to preverve Lua's standard power operator. If you want to use the power operator, write
^^ instead of ^.

Other Operators

A very small but useful addition was the operator !=. Most developers are used to it and, so,
one can now write:

if var != 10 then

0-Based Arrays (Or Tables)

Standard Lua uses 1-based arrays (or tables, as they are called in Lua). Meaning that if you
have an array (with no specfied keys) like:

array = { "hi", "how", "are", "you?" }

Its first element is array[1].

I changed this behavior. In fact, being a C++ developer, I think arrays ought to be 0-based.
So, in the CFF Explorer Lua implementation the first member of the array is array[0]. Here's
an array iteration already shown in the Lua Guide paragraph:

-- for (array iteration)

t = { 10, 20, 30, 40 }

for n = 0, #t - 1 do

 MsgBox("Key: " .. n .. " Value: " .. t[n])

end

0-based tables are one of the reasons (not the only one) I didn't enable most of the standard
Lua functions (although some basic functions are available), since most functions exported by
these libraries don't work correctly with 0-based tables.

I think 1-based tables are Lua's biggest flaw. A lot of people are complaining about them, but
changing the inner behavior of Lua to let it treat 0 just as any other index is not so easy. This
was really the most difficult choice I had to face when implementing Lua: leave 1-based tables
or convert them? Making them 0-based brought a performance and a compatiblity loss that I
accepted (not without doubts, though), since most developers would've gone made the other
way (having also in mind the kind of developers who would use this scripting language). Again,
I think I made the right call.

C# Strings

In addition to regular strings like:

"C:\\path\\...\\myfile"

I introduced C# strings:

@"C:\path\...\myfile"

I think this is quite useful and comes handy if one wants to execute a script function from
command-line.

Imagine this scenario: I want to execute from command-line a function, say
UpdatedChecksum, on a file. If I have the file name in a string, then, in order to pass it to the
script function, I would have to duplicate all back-slashes in the string. This, of course, isn't
necessary if I use a C# string:

wsprintf(CmdLine, _T("-CFFSCRIPT=UpdateChecksum(@\"%s\")"), FileName);

Definitions

• All Portable Executable related definitions in WinNT.h are provided.
• Most definitions of CorHdr.h are provided.
• Some Win32 definitions connected with the Win32 APIs wrapped by the scripting

language are provided.

For instance, one could write:

MsgBox("Hello world!", "Caption", MB_ICONINFORMATION | MB_YESNO)

or:

if var == IMAGE_DOS_SIGNATURE then

The available definitions are thousands.

One other thing you'll frequently see in CFF Explorer scripts is the use of the type "null"
instead of Lua's standard "nil". Lua's "nil" is still available, I added "null" because "nil"
reminded me too much of Pascal/Delphi. It's simply a style choice.

How It Works

There are several ways to execute a CFF Explorer script:

• Double-click on it.
• Drag it with the mouse on the GUI.
• Load it from Open File or from the dedicated menu.
• Specify the script path command-line argument. E.g.: CFF Explorer.exe myscript.cff.
• Execute script functions directly through command-line. E.g.: CFF Explorer.exe -

CFFSCRIPT=RealignPE("hello.exe", 0x200)

CFF Explorer's scripts have the extension "*.cff".

You can write a script in any of these encodings: ascii, unicode, UTF-8. The CFF Explorer
recognizes the encoding with the same procedure used by the Windows Notepad. Unicode and
UTF-8 files have a two-byte signature at the beginning (you can't see it directly in the editor).
Once the CFF Explorer has determined the encoding, it'll handle it the right way. Lua doesn't
natively support unicode strings. Thus, you have to understand that at runtime, the script will
be working with UTF-8 strings. To sum up, the point is that you can use chinese or russian
characters, as long as you save the script as unicode or UTF-8 text file (just like the notepad
does).

To get the current script version from within a script you can rely on the definition
"SCRIPT_VERSION":

-- shows the current script version
MsgBox(SCRIPT_VERSION)

All handles opened by a script are automatically closed after its execution. Nonetheless, closing
handles during the execution is just a better coding style and is very advisable if the script
opens many handles (which might be memory consuming). To close a handle (of any kind) use
CloseHandle.

Functions can have a variable number of arguments. Moreover, some arguments can be of
multiple type. When a function is declared like this:

IsPE64(FileName/Handle)

It means that you can either pass a string (containing the file name) or a handle (of a
previously opened file). If the functions modifies the file and you called the function through
file name, then it'll apply the changes directly on the file. Viceversa, if you called the function
through file handle, changes will be applied in memory only and to save them to disk, you'll
have to call either SaveFile or SaveFileAs. Using handles is advised when doing more than just
one operation on a file or when you want to save the file with a different name.

Security Issues

The CFF Explorer scripting language offers many APIs to easily manipulate Portable
Executables. In addition to that, it offers functions to walk through the file system, functions to
execute external application, to delete files etc. Thus, running a script could potentially be
dangerous just like running an executable and could, in theory, behave just like a virus. To
avoid problems for the user, I implemented some sort of UAC (don't worry it's not annoying
like the real one), which I called Scripting Privilege Protection (SPP). Certain functions in order
to be performed ask the user for consent. Once the user has given his consent, the script will
be high-privileged and can execute any function. If the users doesn't give his consent, the
function fails. A script might check if it's high-privileged through the function
HasHighPrivileges. Moreover, a script can explicitly ask the user to give high privileges to it
through the function RequestHighPrivileges.

Now, let us look at a real world example. Let's assume a script just called the function
MoveFile. This is the dialog which the Scripting Privilege Protection will prompt to the user:

You can know if a function needs high privileges or not by looking it up in the Functions
Reference.

If you think that the Scripting Privilege Protection is just annoying, you can disable it from the
CFF Explorer preferences; just uncheck this box:

Code Samples

This paragraph goes down to the practice. What follows are just a few examples of what the
CFF Explorer scripting language is able to do. Listing every possible application would be
impossible for me, there are just too many.

PE Resources

I start with this paragraph, because if people will use the CFF Explorer scripting feature, most
of them will do it to edit PE resources, I guess. Scripting functions to handle resources have a
few advantages over Win32 APIs. In fact, Windows APIs do not handle special resources in a
specif way. Adding a bitmap (or another special resource) to the resources rawly won't work:
special resources are to be handled in a specific way before storing them in the Resource
Directory of a PE. And that's what the CFF Explorer scripting APIs do. Also, Windows APIs for
resource handling require the language coordinates for the resource. If the language is not the
same as the one of the resource in the file, Windows APIs fails. These APIs, viceversa, can (as
this is optional) be used without language coordinates. This comes handy if, for instance, one
needs to delete a resource in a PE, but doens't know the resource's language. In that case the
DeleteResource API deletes the first resource with the given name / id.

In the code example which follows a manifest resource is transferred from one file to another.

-- get the manifest resource of a file
-- and the puts it into another one

filename = GetOpenFile("Get Manifest", "All\n*.*\nexe\n*.exe\ndll\n*.dll\n")

if filename == null then
 return
end

if SaveResource(filename, "res.manifest", RT_MANIFEST, 1) == false then
 DeleteFile("res.manifest")
 return
end

filename = GetOpenFile("Set Manifest", "All\n*.*\nexe\n*.exe\ndll\n*.dll\n")

if filename == null then
 DeleteFile("res.manifest")
 return
end

AddResource(filename, "res.manifest", RT_MANIFEST, 1)

DeleteFile("res.manifest")

Easy PE Editing

The CFF Scripting language can be used to accomplish easy PE editing task such as the one
which follows. This very little script patches x86 executables in order to let them have 4GB
(instead of only 2) of virtual memory on x64 platforms by setting a flag in the File Header
structure.

-- this script patches a PE32 in order let it handle 4GB
-- address space on x64 systems

filename = GetOpenFile("Open...", "All\n*.*\nexe\n*.exe\ndll\n*.dll\n")

if filename == null then
 return
end

pehandle = OpenFile(filename)

if pehandle == null then
 return
end

fileheader = GetOffset(pehandle, PE_FileHeader)

-- check if it's a valid PE
if fileheader == null then
 -- CloseHandle is really not necessary,
 -- since the file will be automatically closed
 return
end

-- check if it's a PE64
-- if so, there's no need to patch

if IsPE64(pehandle) == true then
 MsgBox("This is a PE64. No need to patch.", "4GB Patch", MB_ICONEXCLAMATION)
 return
end

-- set large address space awareness flag

Characteristics = ReadWord(pehandle, fileheader + 18)

Characteristics = Characteristics | IMAGE_FILE_LARGE_ADDRESS_AWARE

WriteWord(pehandle, fileheader + 18, Characteristics)

-- save the file

nRet = MsgBox("Overwrite the file?", "4GB Patch", MB_ICONQUESTION | MB_YESNO)

if nRet == IDYES then
 if SaveFile(pehandle) == true then
 MsgBox("File successfully saved.", "4GB Patch", MB_ICONINFORMATION)
 else
 MsgBox("Couldn't save file", "4GB Patch", MB_ICONEXCLAMATION)
 end
else
 filename = GetSaveFile("Save As...", "All\n*.*\nexe\n*.exe\ndll\n*.dll\n")

 if filename == null then
 MsgBox("Couldn't save file", "4GB Patch", MB_ICONEXCLAMATION)
 else
 if SaveFileAs(pehandle, filename) == true then
 MsgBox("File successfully saved.", "4GB Patch", MB_ICONINFORMATION)
 else
 MsgBox("Couldn't save file", "4GB Patch", MB_ICONEXCLAMATION)
 end
 end
end

I guess this needs no further explanation.

Advanced PE Editing

Even advanced PE editing can be easily accomplished using the CFF Explorer scripting
language. In the next sample, we'll see how to add code to the last section of a PE, redirect
the entry point to our code, jump from our code to the original entry point and, finally, update
the PE's checksum value and remove the strong name signature in case it's a .NET assembly. I
don't want to encourage someone to infect a PE through scripting. I just want to show how
easily a more advaced task like this is performed with very little of code. Also, the logging
functions will be used in this script, so we will be informed about every step of our code.

-- this script adds code to the last section of a PE,
-- changes the entry point to the added code
-- and rebuilds the PE

-- this functions checks if a flag is set

function IsFlag(value, flag)
 if (value & flag) == flag then
 return true
 end
 return false
end

-- prints string to the current log and goes to new line
function AddToLog(str)
 -- we can do this because hLog is a global variable
 if hLog then
 LogPrint(hLog, str .. "\n")
 end
end

-- show log

function ShowLog()

 -- Open log?

 if hLog != null then

 CloseLog(hLog)

 nRet = MsgBox("Open log file?", "Advanced PE Editing", MB_ICONQUESTION |
MB_YESNO)

 if nRet == IDYES then
 ExecuteAppAndWait(@"C:\Windows\System32\notepad.exe",
GetShortPathName(logname))
 end

 DeleteFile(logname)
 end
end

-- --
-- the main code starts here
-- --

filename = GetOpenFile("Open...", "All\n*.*\nexe\n*.exe\ndll\n*.dll\n")

if filename == null then
 return
end

pehandle = OpenFile(filename)

if pehandle == null then
 return
end

optheader = GetOffset(pehandle, PE_OptionalHeader)

-- check if it's a valid PE
if optheader == null then
 -- CloseHandle is really not necessary,
 -- since the file will be automatically closed
 return
end

-- open log

logname = GetCurrentDirectory() .. @"\peadv.txt"

hLog = CreateLog(logname)

-- read original entry point

OEP = ReadDword(pehandle, optheader + 0x10)

AddToLog("Original Entry Point: " .. string.format("%08X", OEP))

-- get number of sections

nSections = GetNumberOfSections(pehandle)

if nSections == null or nSection == 0 then
 ShowLog()
 return
end

AddToLog("Number of sections: " .. nSections)

-- get section headers

sectheaders = GetOffset(pehandle, PE_SectionHeaders)

-- get the offset of the last section

lastsection = ((nSections - 1) * IMAGE_SIZEOF_SECTION_HEADER) + sectheaders

-- read the last section's characteristics

Characteristics = ReadDword(pehandle, lastsection + 36)

AddToLog("Last section original characteristics: " .. string.format("%08X",
Characteristics))

-- check the last section characteristics
-- make sure the section is readable & executable

if IsFlag(Characteristics, IMAGE_SCN_MEM_READ) == false or
 IsFlag(Characteristics, IMAGE_SCN_MEM_EXECUTE) == false then
 Characteristics = Characteristics | IMAGE_SCN_MEM_READ
 Characteristics = Characteristics | IMAGE_SCN_MEM_EXECUTE
 WriteDword(pehandle, lastsection + 36, Characteristics)
 AddToLog("The last section is now readable and executable")
end

-- here is the new code to add
-- in our case just a jump (we'll add the address later on)

newepcode = { 0xE9, 0x00, 0x00, 0x00, 0x00 }

codeoffset = AddDataToLastSection(pehandle, newepcode)

if codeoffset == null then
 AddToLog("Error: Couldn't add code to the last section")
 return
end

-- get the new entry point RVA

NewEP = OffsetToRva(pehandle, codeoffset)

-- calculate the relative address to the OEP
-- (5 stands for the jump size)

reladdr = (OEP - NewEP) - 5

WriteDword(pehandle, codeoffset + 1, reladdr)

AddToLog("Code successfully added to the last section")

-- set new entry point

if NewEP != null then
 WriteDword(pehandle, optheader + 0x10, NewEP)
 AddToLog("New entry point: " .. string.format("%08X", NewEP))
else
 AddToLog("Couldn't set new entry point")
 ShowLog()
 return
end

-- removes the Strong Name Signature if the PE is a .NET assembly

if IsDotNET(pehandle) == true then
 if RemoveStrongNameSignature(pehandle) == true then
 AddToLog("Strong Name Signature removed from the assembly")
 end
end

-- updates the checksum in case the PE is a driver

if UpdateChecksum(pehandle) == true then
 AddToLog("PE checksum successfully updated")
end

-- save the file

nRet = MsgBox("Overwrite the file?", "Advanced PE Editing", MB_ICONQUESTION |
MB_YESNO)

if nRet == IDYES then
 if SaveFile(pehandle) == true then
 AddToLog("File successfully saved")
 else
 AddToLog("Couldn't save file")
 end
else
 filename = GetSaveFile("Save As...", "All\n*.*\nexe\n*.exe\ndll\n*.dll\n")

 if filename == null then
 AddToLog("Couldn't save file")
 else
 if SaveFileAs(pehandle, filename) == true then
 AddToLog("File successfully saved")
 else
 AddToLog("Couldn't save file")
 end
 end
end

CloseHandle(pehandle)

-- Show log

ShowLog()

I don't want to imply that the CFF Explorer scripting is almighty, but, as you can see, what I
did through this script would take a little bit more in C++. Also, what I did here might not be
very useful, I just wanted to show the scripting's potential. I wrote this script in 20 minutes,
not more.

Generic Patches

This is one of the most "on the fly" applications for the CFF Explorer scripting. The function
SearchBytes searches for an array of bytes where wildcards are allowed. This is perfect for
code patches.

-- generic patch

filename = GetOpenFile()

if filename == null then
 return
end

-- "ND" elements are wildcards

signature = {
 0x74, 0x07, 0x56, 0xE8, ND, ND, ND, ND, 0x59, 0x8B, 0xC6, 0x5E, 0xC2, 0x04,
0x00, 0x8B,
 0x44, 0x24, 0x04, 0x83, 0xC1, 0x09, 0x51, 0x83, 0xC0, 0x09, 0x50, 0xE8
}

offset = SearchBytes(filename, 0, signature)

if offset != null then
 InvertJump(filename, offset)
 MsgBox("File patched!", "Generic Patch", MB_ICONINFORMATION)
end

As you can see, we wrote a generic patch in about 10 lines of code. I think this is quite a
comfort for most experts who need to write a patch on the fly.

We can even write a patch that patches all the occurrences of a given byte signature:

-- generic patch 2

filename = GetOpenFile()

if filename == null then
 return
end

-- "ND" elements are wildcards

signature = {
 0x74, 0x07, 0x56, 0xE8, ND, ND, ND, ND, 0x59, 0x8B, 0xC6, 0x5E, 0xC2, 0x04,
0x00, 0x8B,
 0x44, 0x24, 0x04, 0x83, 0xC1, 0x09, 0x51, 0x83, 0xC0, 0x09, 0x50, 0xE8
}

filehandle = OpenFile(filename)

if filehandle == null then
 return
end

offset = SearchBytes(filehandle, 0, signature)

nPatches = 0

while offset != null do
 InvertJump(filehandle, offset)
 nPatches = nPatches + 1
 offset = SearchBytes(filehandle, offset + 1, signature)
end

if SaveFile(filehandle) and nPatches > 0 then
 MsgBox("File patched!", "Generic Patch", MB_ICONINFORMATION)
end

To retrieve a Lua array from a given file use the CFF Explorer: open the Hex Editor and then
click on Copy Lua Array. To patch you can either use the Data Access functios or the
Assembler functions.

PE Reports

Reports of PE information can be easily generated through scripting. In the example which
follows I'll show how to create a report of a PE Import Directory.

-- this script generates a report
-- of a PE' Import Directory

-- this functions checks if a flag is set
function IsFlag(value, flag)
 if (value & flag) == flag then
 return true
 end
 return false
end

-- prints string to the current report and goes to new line
function AddToReport(str)
 -- we can do this because hReport is a global variable
 LogPrint(hReport, str .. "\n")
end

-- --
-- the main code starts here
-- --

filename = GetOpenFile("Open...", "All\n*.*\nexe\n*.exe\ndll\n*.dll\n")

if filename == null then
 return
end

pehandle = OpenFile(filename)

if pehandle == null then
 return
end

-- get Import Directory offset if any

itoffset = GetOffset(pehandle, PE_ImportDirectory)

-- check if it's a valid PE and has a IT
if itoffset == null then
 -- CloseHandle is really not necessary,
 -- since the file will be automatically closed
 return
end

-- Get report name and create the file

repname = GetSaveFile("Save Report As..", "Text File\n*.txt\n")

if repname == null then
 return
end

hReport = CreateLog(repname)

if hReport == null then
 return
end

-- sets additional definition

ImportDescriptorSize = 20

-- walk through the Import Directory

nCurrentDescr = 0

FirstThunk = ReadDword(pehandle, itoffset + 16)

AddToReport("Import Directory report for \"" .. filename .. "\"")

while FirstThunk != 0 do

 CurImpDescrName = (nCurrentDescr * ImportDescriptorSize) + itoffset + 12

 ModNameOffset = RvaToOffset(pehandle, ReadDword(pehandle, CurImpDescrName))

 ModName = ReadString(pehandle, ModNameOffset)

 -- add the mod name to the report

 AddToReport("\n" .. (nCurrentDescr + 1) .. " - " .. ModName .. "\n")

 -- add all the functions to the report

 AddToReport("Ordinal Name")
 AddToReport("------- -------------------------------------")

 OFTs = ReadDword(pehandle, itoffset + (nCurrentDescr * ImportDescriptorSize))

 -- use OFTs or FTs

 Thunks = 0

 if OFTs != 0 then
 Thunks = RvaToOffset(pehandle, OFTs)
 else
 Thunks = RvaToOffset(pehandle, FirstThunk)
 end

 -- list functions

 bPE64 = IsPE64(pehandle)

 CurThunkOffset = Thunks

 CurThunk = 0

 if bPE64 == true then
 CurThunk = ReadQword(pehandle, CurThunkOffset)
 else
 CurThunk = ReadDword(pehandle, CurThunkOffset)
 end

 while CurThunk != null and CurThunk != 0 do

 -- check if it's ordinal only

 bOrdinal = false

 if bPE64 == true then
 bOrdinal = IsFlag(CurThunk, IMAGE_ORDINAL_FLAG64)
 else
 bOrdinal = IsFlag(CurThunk, IMAGE_ORDINAL_FLAG32)
 end

 if bOrdinal == true then

 local Ordinal = ReadWord(pehandle, CurThunkOffset)

 AddToReport("0x" .. string.format("%04X", Ordinal))

 else

 FuncOffset = RvaToOffset(pehandle, (CurThunk & 0xFFFFFFFF))

 local Ordinal = ReadWord(pehandle, FuncOffset)

 FuncName = ReadString(pehandle, FuncOffset + 2)

 AddToReport("0x" .. string.format("%04X", Ordinal) .. " " .. FuncName)
 end

 -- next thunk

 if bPE64 == true then
 CurThunkOffset = CurThunkOffset + 8
 CurThunk = ReadQword(pehandle, CurThunkOffset)
 else
 CurThunkOffset = CurThunkOffset + 4
 CurThunk = ReadDword(pehandle, CurThunkOffset)
 end

 end

 -- next import descriptor

 nCurrentDescr = nCurrentDescr + 1

 NextImportDescr = (itoffset + (nCurrentDescr * ImportDescriptorSize)) + 16

 FirstThunk = ReadDword(pehandle, NextImportDescr)

end

-- Open the report?

CloseLog(hReport)

nRet = MsgBox("Open report file?", "IT Report", MB_ICONQUESTION | MB_YESNO)

if nRet == IDYES then
 ExecuteAppAndWait(@"C:\Windows\System32\notepad.exe",
GetShortPathName(repname))
end

This is the output of this script:

Import Directory report for "C:\...\CFF Explorer.exe"

1 - KERNEL32.dll

Ordinal Name
------- -------------------------------------
0x02D7 RtlUnwind
0x021A HeapReAlloc
0x02A7 RaiseException
0x00B9 ExitProcess
0x0066 CreateProcessA
etc.

2 - USER32.dll

Ordinal Name
------- -------------------------------------
0x0204 PostQuitMessage
0x028F ShowOwnedPopups
0x027F SetWindowContextHelpId
0x0037 CharUpperW
0x02B4 UnregisterClassW
0x002C CharNextW
etc.

3 - GDI32.dll

Ordinal Name
------- -------------------------------------
0x0160 GetClipBox
0x004B CreateRectRgn
0x0026 CopyMetaFileW
0x0207 SaveDC
0x0200 RestoreDC
0x0216 SetBkMode
0x022B SetMapMode
etc.

4 - comdlg32.dll

Ordinal Name
------- -------------------------------------
0x000C GetSaveFileNameW
0x000A GetOpenFileNameW
0x0008 GetFileTitleW

etc.

This is even a complicated report, but the code is quite easy as you can see. Of course, not all
reports have to be this complicated.

Extension Setups

One last code sample is about extension setups. CFF Explorer extensions can now be installed
in an elegant way through scripting. This is way better than manually placing the files in the
CFF Explorer extensions directory. Not only that, but the scripting language is able to install
the right files for the current platform by using the function GetCFFExplorerMachine, which
returns the machine of the CFF Explorer executable.

Here's the setup of my Resource Tweaker extension for the CFF Explorer:

-- This is the setup for Resource Tweaker
-- © 2007 Daniel Pistelli. All rights reserved.

nRet = MsgBox("This is the setup for Resource Tweaker. Resource Tweaker is an
extension for the CFF Explorer which allows to edit resources of non-x86
executables with older applications (e.g. Resource Hacker). Click \"Yes\" to
continue the setup process.", "Resource Tweaker Setup", MB_ICONINFORMATION |
MB_YESNO)

if nRet == IDNO then
 return
end

-- the script needs high privileges to install the files

bHighPriv = RequestHighPrivileges()

if bHighPriv == false then
 return
end

SetupDir = GetCurrentDirectory() .. @"\Resource Tweaker\"
CFFDir = GetCFFExplorerDirectory()
ExtDir = CFFDir .. @"\Extensions\CFF Explorer\Resource Tweaker\"

-- Make sure we have our extension directories

CreateDirectory(CFFDir .. @"\Extensions")
CreateDirectory(CFFDir .. @"\Extensions\CFF Explorer")
CreateDirectory(ExtDir)

-- Now we need to know what kind of files have to be installed given a certain
platform

machine = GetCFFExplorerMachine()

-- Install the files for x86

if machine == IMAGE_FILE_MACHINE_I386 then

 CopyFile(SetupDir .. "Resource Tweaker.dll", ExtDir .. "Resource
Tweaker.dll", true)

-- Install the files for x64

elseif machine == IMAGE_FILE_MACHINE_AMD64 then

 CopyFile(SetupDir .. "Resource Tweaker_x64.dll", ExtDir .. "Resource
Tweaker_x64.dll", true)

-- Install the files for IA64

elseif machine == IMAGE_FILE_MACHINE_IA64 then

 CopyFile(SetupDir .. "Resource Tweaker_IA64.dll", ExtDir .. "Resource
Tweaker_IA64.dll", true)

end

-- Install all other files that are not platform dependent

CopyFile(SetupDir .. "ResHacker.exe", ExtDir .. "ResHacker.exe", true)

CreateDirectory(ExtDir .. "ResHacker_Docs")
CopyFile(SetupDir .. @"ResHacker_Docs\ReadMe.txt", ExtDir ..
@"ResHacker_Docs\ReadMe.txt", true)
CopyFile(SetupDir .. @"ResHacker_Docs\Version_History.txt",
 ExtDir .. @"ResHacker_Docs\Version_History.txt", true)

-- Inform the user that the setup is now complete

MsgBox("The Resource Tweaker extension for the CFF Explorer was successfully
installed.",
 "Resource Tweaker Setup", MB_ICONINFORMATION)

This is quite easy and doesn't need any coment.

Functions Reference

General

Security

HasHighPrivileges
RequestHighPrivileges

Misc

GetCFFExplorerDirectory
GetCFFExplorerMachine
GetCurrentDirectory
OpenWithCFFExplorer

Handles

CloseHandle

Files

CloseFile
GetFileSize
OpenFile
SaveFile
SaveFileAs

Logging

CreateLog
CloseLog
LogPrint

Assembler

Data Access

ReadByte
ReadWord
ReadDword
ReadQword
ReadBytes
ReadString
WriteByte
WriteWord
WriteDword
WriteQword
WriteBytes
WriteString

FillBytes
SearchBytes

InvertJump
MakeJumpUnconditional
NopBytes

Portable Executable

General

GetOffset
IsDotNET
IsPE64

Addresses

IsRvaValid
OffsetToRva
RvaToOffset
SectionFromRva
VaToOffset
VaToRva

Resources

AddResource
AddResourceRaw
DeleteResource
ImportResourceDirectory
MAKELANGID
SaveResource
SaveResourceRaw

Sections

AddDataToLastSection
AddSection
AddSectionHeader
AddSectionWithData
DeleteSection
DeleteSectionHeader
DumpSection
GetNumberOfSections

Rebuilding

AfterDumpHeaderFix
BindImports
RealignPE
RebuildImageSize
RebuildPEHeader
RemoveDataDirectory
RemoveDebugDirectory
RemoveRelocSection
RemoveStrongNameSignature
SetImageBase
UpdateChecksum

Win32

Common Dialogs

GetDirectory
GetOpenFile
GetSaveFile
InputBox
MsgBox

Searching

InitFindFile
FindFile

Applications

ExecuteApp
ExecuteAppAndWait

Files & Directories

CopyFile
DeleteFile
MoveFile

CreateDirectory
DeleteDirectory

GetLongPathName
GetShortPathName

HasHighPrivileges

HasHighPrivileges()

Retruns true if the script has high privileges, otherwise false.

RequestHighPrivileges

RequestHighPrivileges()

Ask consent to the user for high privileges.

Retruns true if successful, otherwise false.

GetCFFExplorerDirectory

GetCFFExplorerDirectory()

Returns the directory of the CFF Explorer. E.g. "C:\...\Explorer Suite".

GetCFFExplorerMachine

GetCFFExplorerMachine()

Returns the value of FileHeader->Machine, which for the CFF Explorer can either be
IMAGE_FILE_MACHINE_I386, IMAGE_FILE_MACHINE_AMD64 or IMAGE_FILE_MACHINE_IA64.

GetCurrentDirectory

GetCurrentDirectory()

Returns the current directory. E.g. "C:\...\Files".

If the script was processed through command line, the function returns null.

OpenWithCFFExplorer

OpenWithCFFExplorer(FileName)

Doesn't have a return value.

Remarks: this function needs high privileges to be performed.

CloseHandle

CloseHandle(Handle)

Closes a handle previously opened. Can be any kind of handle.

Doesn't have a return value.

CloseFile

CloseFile(FileHandle)

See CloseHandle.

Doesn't have a return value.

GetFileSize

GetFileSize(FileName/Handle)

Returns the size of a given file. If the function fails, it returns null.

OpenFile

OpenFile(FileName)

Returns a handle to the opened file. If the function fails, it returns null.

Remarks: the opened file is loaded into memory. This is not a standard OpenFile, but the
function providing a handle for all other scripting functions to operate with.

SaveFile

SaveFile(FileHandle)
SaveFile(FileHandle, FileName)

Saves a file to disk. If only the the file handle is provided, it saves the file with the current
name. Otherwise it acts like SaveFileAs.

Returns true if successful, otherwise false.

SaveFileAs

SaveFileAs(FileHandle, FileName)

Saves a file to disk with a given name.

Returns true if successful, otherwise false.

CreateLog

CreateLog(FileName)
CreateLog(FileName, bAppend)

Creates a new log file. If the log file already exists and the bAppend parameter is true, then all
messages printed to the log will be added the existing ones.

Example:

hLog = CreateLog("log.txt")

if hLog == null then
 return
end

LogPrint(hLog, "hello\world!\nHow are you?")
LogPrint(hLog, "I'm fine, thanks!\n")

CloseLog(hLog)

Returns a handle to the created log. If the function fails, it returns null.

CloseLog

CloseLog(LogHandle)

See CloseHandle.

Doesn't have a return value.

LogPrint

LogPrint(LogHandle, String)

Prints a string to an already opened log file.

Returns true if successful, otherwise false.

InvertJump

InvertJump(FileName/Handle, Offset)
InvertJump(FileName/Handle, Offset, AssemblyType)

Inverts a conditional jump/branch. Possible values for AssemblyType are:

DISASM_X86_16
DISASM_X86
DISASM_X64
DISASM_NET

If the AssemblyType parameter is not specified, the function tries to automatically recognize
the file type. The DISASM_NET value stands for .NET assembly.

Returns true if successful, otherwise false.

MakeJumpUnconditional

MakeJumpUnconditional(FileName/Handle, Offset)
MakeJumpUnconditional(FileName/Handle, Offset, AssemblyType)

Converts a conditional jump/branch to unconditional. Possible values for AssemblyType are:

DISASM_X86_16
DISASM_X86
DISASM_X64
DISASM_NET

If the AssemblyType parameter is not specified, the function tries to automatically recognize
the file type. The DISASM_NET value stands for .NET assembly.

Returns true if successful, otherwise false.

Remarks: if the jump/branch is already conditional, the function fails.

NopBytes

NopBytes(FileName/Handle, Offset, Lenght)
NopBytes(FileName/Handle, Offset, Lenght, AssemblyType)

Nops a specified amount of bytes (Lenght) at a given offset. Possible values for AssemblyType
are:

DISASM_X86_16
DISASM_X86
DISASM_X64
DISASM_NET

If the AssemblyType parameter is not specified, the function tries to automatically recognize
the file type. The DISASM_NET value stands for .NET assembly.

Returns true if successful, otherwise false.

ReadByte

ReadByte(FileName/Handle, Offset)

Reads a byte from a given file at a given offset.

Returns the data if successful, otherwise null.

ReadWord

ReadWord(FileName/Handle, Offset)

Reads a word from a given file at a given offset.

Returns the data if successful, otherwise null.

ReadDword

ReadDword(FileName/Handle, Offset)

Reads a dword from a given file at a given offset.

Returns the data if successful, otherwise null.

ReadQword

ReadQword(FileName/Handle, Offset)

Reads a qword from a given file at a given offset.

Returns the data if successful, otherwise null.

ReadBytes

ReadBytes(FileName/Handle, Offset, Lenght)

Reads an array of bytes from a given file at a given offset.

Example:

data = ReadBytes(filehandle, 0, 50)
-- prints the lenght: 50
MsgBox(#data)

Returns the data if successful, otherwise null.

ReadString

ReadString(FileName/Handle, Offset)
ReadString(FileName/Handle, Offset, bUnicode)
ReadString(FileName/Handle, Offset, bUnicode, Lenght)

Reads a string from a given file at a given offset. bUnicode tells the function if the string to
read is encoded as unicode. The default value for this parameter is false. If the parameter
Lenght is not specified, the function looks for a null terminator to calculate the string's lenght.

Returns the string if successful, otherwise null.

WriteByte

WriteByte(FileName/Handle, Offset, Data)

Writes a byte to a given file at a given offset.

Returns true if successful, otherwise false.

WriteWord

WriteWord(FileName/Handle, Offset, Data)

Writes a word to a given file at a given offset.

Returns true if successful, otherwise false.

WriteDword

WriteDword(FileName/Handle, Offset, Data)

Writes a dword to a given file at a given offset.

Returns true if successful, otherwise false.

WriteQword

WriteQword(FileName/Handle, Offset, Data)

Writes a qword to a given file at a given offset.

Returns true if successful, otherwise false.

WriteBytes

WriteBytes(FileName/Handle, Offset, Data)
WriteBytes(FileName/Handle, Offset, Data, Lenght)

Writes an array of bytes to a given file at a given offset. If you don't specify the size, the
function writes the whole array.

Example:

data = { 0x00, 0xFF, 0xFE }

WriteBytes(filehandle, 0, data)

Returns true if successful, otherwise false.

WriteString

WriteString(FileName/Handle, Offset, String)
WriteString(FileName/Handle, Offset, String, bUnicode)
WriteString(FileName/Handle, Offset, String, bUnicode, bTerminator)

Writes a string to a given file at a given offset. bUnicode tells the function if the string to read
is encoded as unicode. The default value for this parameter is false. bTerminator specifies if
the string's null terminator should be written or not. The defualt value for this parameter is
true.

Returns true if successful, otherwise false.

FillBytes

FillBytes(FileName/Handle, Offset, Lenght, Byte)

Fills a specified amount of bytes in a file with a given byte-value. Basically the same as
memset.

Returns true if successful, otherwise false.

SearchBytes

SearchBytes(FileName/Handle, Offset, Bytes)
SearchBytes(FileName/Handle, Offset, Bytes, Lenght)

Searches a byte array in a given file from a given offset. Wildcards in the byte array are
possible through the use of the ND symbol.

Example:

-- all the ND elements in the array are wildcards

data = {
 0x54, 0x68, 0x69, 0x73, 0x20, ND, ND, 0x6F, 0x67, 0x72, 0x61, 0x6D, 0x20,
0x63, 0x61, 0x6E,
 0x6E, 0x6F, 0x74, 0x20, 0x62, 0x65, ND, 0x72, 0x75, 0x6E, 0x20, 0x69, 0x6E,
0x20, 0x44, 0x4F,
 0x53, 0x20, 0x6D, 0x6F, ND, 0x65
}

filename = GetOpenFile()

offset = SearchBytes(filename, 0, data)

while offset != null do
 -- valid offset
 MsgBox("Bytes found at offset: " .. offset)
 offset = SearchBytes(filename, offset + 1, data)
end

Returns the offset if successful, otherwise null.

GetOffset

GetOffset(FileName/Handle, PEField)

This function returns an offset of a known PE field. Available fields are:

PE_DosHeader
PE_NtHeaders
PE_FileHeader
PE_OptionalHeader
PE_DataDirectories
PE_SectionHeaders
PE_ExportDirectory
PE_ImportDirectory
PE_ResourceDirectory
PE_ExceptionDirectory
PE_SecurityDirectory
PE_RelocationDirectory
PE_DebugDirectory
PE_TLSDirectory
PE_ConfigurationDirectory
PE_BoundImportDirectory
PE_ImportAddressTableDirectory
PE_DelayImportDirectory
PE_DotNETDirectory

Returns the PE field offset. If the functions fails, it returns null.

IsDotNET

IsDotNET(FileName/Handle)

Returns true if it's a .NET assembly, otherwise false.

IsPE64

IsPE64(FileName/Handle)

Returns true if it's a 64bit PE, otherwise false.

IsRvaValid

IsRvaValid(FileName/Handle, Rva)

Checks if a relative virtual address is valid in the context of the specified file.

Returns true if valid, otherwise false.

OffsetToRva

OffsetToRva(FileName/Handle, Offset)

Converts a file offset to a relative virtual address.

Returns a relative virtual address. The function returns null if it can't convert to Rva.

RvaToOffset

RvaToOffset(FileName/Handle, Rva)

Converts a relative virtual address to a file offset.

Returns a file offset. If the Rva is invalid, the function returns null.

SectionFromRva

SectionFromRva(FileName/Handle, Rva)

Converts a relative virtual address to a PE section index.

Returns a section index. If unsuccessful, it returns null.

VaToOffset

VaToOffset(FileName/Handle, Va)

Converts a virtual address to a file offset.

Returns a file offset. If the virtual address is not valid, the function returns null.

VaToRva

VaToRva(FileName/Handle, Va)

Converts a virtual address to a relative virtual address.

Returns a relative virtual address if successful, otherwise null.

AddResource

AddResource(FileName/Handle, ResFileName/Handle, ResTypeNameOrId)
AddResource(FileName/Handle, ResFileName/Handle, ResTypeNameOrId, ResNameOrId)
AddResource(FileName/Handle, ResFileName/Handle, ResTypeNameOrId, ResNameOrId,
Language)

Adds a resource to a file. Some type of resources are treated in a specific way to be correctly
stored into the PE file. If you don't want the resource to be treated in any way, use
AddResourceRaw, which puts the raw data of the resource into the PE file regardeless of
special resource types.

Example:

AddResource(filename, resname, RT_BITMAP, 1, MAKELANGID(LANG_NEUTRAL,
SUBLANG_DEFAULT))

Returns true if successful, otherwise false.

Remarks: if the given resource already exists in the PE, it will be replaced.

AddResourceRaw

AddResourceRaw(FileName/Handle, ResFileName/Handle, <<
ResTypeNameOrId)
AddResourceRaw(FileName/Handle, ResFileName/Handle, ResTypeNameOrId,
ResNameOrId)
AddResourceRaw(FileName/Handle, ResFileName/Handle, ResTypeNameOrId,
ResNameOrId, Language)

Adds the raw data of a resource into a PE file.

Returns true if successful, otherwise false.

Remarks: if the given resource already exists in the PE, it will be replaced.

DeleteResource

DeleteResource(FileName/Handle, ResTypeNameOrId, ResNameOrId)
DeleteResource(FileName/Handle, ResTypeNameOrId, ResNameOrId, Language)

Deletes a resource of a PE file. If the language is not specified, the function deletes the first
resource with the given name / id.

Returns true if successful, otherwise false.

Remarks: the Windows API to do this task requests the language as parameter. If the
language is not the same as the one of the resource in the file, the Windows API fails. Thus,
this function can be very handy if one is unsure about the resource language.

ImportResourceDirectory

ImportResourceDirectory(FileName/Handle, File2Name/Handle)
ImportResourceDirectory(FileName/Handle, File2Name/Handle, bDeleteOld)

Imports the Resource Directory from one PE to another. If bDeleteOld parameter is true, the
function deletes the old resources.

Returns true if successful, otherwise false.

MAKELANGID

MAKELANGID(a, b)

Used for resource functions. Creates a language id, just like in Win32.

Example:

LangId = MAKELANGID(LANG_NEUTRAL, SUBLANG_DEFAULT)

Returns the language ID.

SaveResource

SaveResource(FileName/Handle, ResFileName, ResTypeNameOrId, ResNameOrId)
SaveResource(FileName/Handle, ResFileName, ResTypeNameOrId, ResNameOrId,
Language)

Saves a resource in a PE file to disk. Some type of resources are treated in a specific way to be
correctly saved to disk. If you don't want the resource to be treated in any way, use
SaveResourceRaw, which saves the raw data of the resource to disk regardeless of special
resource types.

Example:

SaveResource(filehandle, "hello.ico", RT_ICON)

Returns true if successful, otherwise false.

Remarks: the Windows API to do this task requests the language as parameter. If the
language is not the same as the one of the resource in the file, the Windows API fails. Thus,
this function can be very handy if one is unsure about the resource language.

SaveResourceRaw

SaveResourceRaw(FileName/Handle, ResFileName, ResTypeNameOrId, ResNameOrId)
SaveResourceRaw(FileName/Handle, ResFileName, ResTypeNameOrId, ResNameOrId,
Language)

Saves the raw data of a resource to disk regardeless of special resource types.

Returns true if successful, otherwise false.

Remarks: the Windows API to do this task requests the language as parameter. If the
language is not the same as the one of the resource in the file, the Windows API fails. Thus,
this function can be very handy if one is unsure about the resource language.

AddDataToLastSection

AddDataToLastSection(FileName/Handle, DataFileName/Handle/Bytes)

Adds data to the last section of a PE.

Returns the offset of the added data, otherwise null.

AddSection

AddSection(FileName/Handle, Size)
AddSection(FileName/Handle, Size, SectionName)
AddSection(FileName/Handle, Size, SectionName, Characteristics)

Adds a new section to a PE. The Characteristics are the same as in Win32.

Returns true if successful, otherwise false.

Remarks: the section name cannot contain more than 8 chars. All other characters will be
discarded.

AddSectionHeader

AddSectionHeader(FileName/Handle)

Adds a new section header to a PE.

Returns true if successful, otherwise false.

AddSectionWithData

AddSectionWithData(FileName/Handle, SectFileName/Handle/Bytes)
AddSectionWithData(FileName/Handle, SectFileName/Handle/Bytes, SectionName)
AddSectionWithData(FileName/Handle, SectFileName/Handle/Bytes, SectionName,
Characteristics)

Adds a new section containing data to a PE. The Characteristics are the same as in Win32. The
size of the section will be calculated based on the size of the data to add.

Example:

AddSectionWithData("my.exe", "datafile")

-- or..

data = { 0xFF, 0xFF, 0xFF }

AddSectionWithData("my.exe", data)

Returns true if successful, otherwise false.

Remarks: the section name cannot contain more than 8 chars. All other characters will be
discarded.

DeleteSection

DeleteSection(FileName/Handle, SectionIndex)

Deletes a PE section. This functions deletes the section header and the section's physical
space. Thus, it may reduce the file size. If you want to delete the section header only, use
DeleteSectionHeader.

Returns true if successful, otherwise false.

DeleteSectionHeader

DeleteSectionHeader(FileName/Handle, SectionIndex)

Deletes a PE section header.

Returns true if successful, otherwise false.

DumpSection

DumpSection(FileName/Handle, SectionIndex, NewFileName)

Dumps the data of a PE section to disk.

Returns true if successful, otherwise false.

GetNumberOfSections

GetNumberOfSections(FileName/Handle)

Gets the number of sections of a PE.

Returns the number of sections. If the function fails, it returns null.

AfterDumpHeaderFix

AfterDumpHeaderFix(FileName/Handle)

Repairs a PE after it was dumped from memory.

Returns true if successful, otherwise false.

BindImports

BindImports(FileName/Handle)

Binds the Import Table of a PE.

Returns true if successful, otherwise false.

RealignPE

RealignPE(FileName/Handle, Alignment)

Realigns a PE to a given value.

Example:

RealignPE("hello.exe", 0x200)

Returns true if successful, otherwise false.

RebuildImageSize

BindImports(FileName/Handle)

Rebuilds the SizeOfImage field of a PE.

Returns true if successful, otherwise false.

RebuildPEHeader

RebuildPEHeader(FileName/Handle)

Rebuilds the header of a PE.

Returns true if successful, otherwise false.

RemoveDataDirectory

RemoveDataDirectory(FileName/Handle, DataDirectoryEntry)

Removes a Data Directory from a PE. To remove the Debug Directory, use
RemoveDebugDirectory.

Example:

RemoveDataDirectory(filehandle, IMAGE_DIRECTORY_ENTRY_TLS)

Returns true if successful, otherwise false.

RemoveDebugDirectory

RemoveDebugDirectory(FileName/Handle)

Strips all the debug information contained in a PE.

Returns true if successful, otherwise false.

RemoveRelocSection

RemoveRelocSection(FileName/Handle)

Removes the reloc section of a PE.

Returns true if successful, otherwise false.

RemoveRelocSection

RemoveRelocSection(FileName/Handle)

Removes the reloc section of a PE.

Returns true if successful, otherwise false.

RemoveStrongNameSignature

RemoveStrongNameSignature(FileName/Handle)

Removes the Strong Name Signature, if present, of a .NET assembly.

Returns true if successful, otherwise false.

SetImageBase

SetImageBase(FileName/Handle, NewImageBase)

Sets the new ImageBase of a PE. If the PE doesn't have a Relocation Directory, the functions
fails.

Returns true if successful, otherwise false.

UpdateChecksum

UpdateChecksum(FileName/Handle)

Updates the CheckSum field of a PE.

Returns true if successful, otherwise false.

GetDirectory

GetDirectory()
GetDirectory(Title)
GetDirectory(Title, CurrentPath)
GetDirectory(Title, CurrentPath, Flags)

Asks the user to choose a directory. Flags are the same as for Win32 Shell API.

Example:

DirName = GetDirectory("Title", CurrentPath, BIF_RETURNONLYFSDIRS)

Returns the name of the selected directory. If no directory was selected, the function returns
null.

GetOpenFile

GetOpenFile()
GetOpenFile(Title)
GetOpenFile(Title, Filter)
GetOpenFile(Title, Filter, Flags)

Asks the user to choose a file to open. The flags are the same as for the Win32
GetOpenFileName. To separate items in the Filter, use \n istead of \0.

Example:

filename = GetOpenFile("Title", "All\n*.*\nexe\n*.exe\ndll\n*.dll\n",
OFN_FILEMUSTEXIST)

Returns the name of the selected file/s. If no file was selected, the function returns null.

GetSaveFile

GetSaveFile()
GetSaveFile(Title)
GetSaveFile(Title, Filter)
GetSaveFile(Title, Filter, Flags)

Asks the user to choose a file to open. The flags are the same as for the Win32
GetSaveFileName. To separate items in the Filter, use \n istead of \0.

Returns the name of the selected file/s. If no file was selected, the function returns null.

InputBox

InputBox()
InputBox(Title)
InputBox(Title, Caption)

Asks the user to type something. A similar dialog is very useful and is basically the same as in
VBS.

Returns the input string. If there is no input string, returns null.

MsgBox

MsgBox(Title)
MsgBox(Title, Caption)
MsgBox(Title, Caption, Type)

Shows a message box. This function behaves exactly like the Win32 API.

Example:

MsgBox(4 + 3)
MsgBox("Hello world!", "Caption", MB_ICONINFORMATION | MB_YESNO)

Returns the clicked button of the message box.

InitFindFile

InitFindFile(FileName)

Initializes a search process. The handle returned by this function can be closed with
CloseHandle. However, the handle is automatically closed when FindFile has iterated through
all the files and returns null.

Example:

hSearchHandle = InitFindFile(path .. "*.*")

if hSearchHandle then

 FName = FindFile(hSearchHandle)

 while FName do
 MsgBox(FName)
 FName = FindFile(hSearchHandle)
 end

end

Returns a handle to use with FindFile. If the function fails, it returns null.

Remarks: this function needs high privileges to be performed.

FindFile

FindFile(SearchHandle)

Used to iterate a search process. For an example of how to search a file, see InitFindFile.

Returns the name of a file. If there are no more files, the function returns null.

ExecuteApp

ExecuteApp(FileName)
ExecuteApp(FileName, CmdLine)

Starts an external application and returns. If you want to wait for the started application to
terminate, use ExecuteAppAndWait instead.

Returns true if successful, otherwise false.

Remarks: this function needs high privileges to be performed.

ExecuteAppAndWait

ExecuteAppAndWait(FileName)
ExecuteAppAndWait(FileName, CmdLine)

Starts an external application and waits for the application to terminate before returning.

Returns true if successful, otherwise false.

Remarks: this function needs high privileges to be performed.

CopyFile

CopyFile(ExistingFileName, NewFileName)
CopyFile(ExistingFileName, NewFileName, bReplaceExisting)

Copies a file.

Returns true if successful, otherwise false.

Remarks: this function needs high privileges to be performed.

DeleteFile

DeleteFile(FileName)

Deletes a file.

Returns true if successful, otherwise false.

Remarks: this function needs high privileges to be performed.

MoveFile

MoveFile(ExistingFileName, NewFileName)
MoveFile(ExistingFileName, NewFileName, bReplaceExisting)

Moves a file.

Returns true if successful, otherwise false.

Remarks: this function needs high privileges to be performed.

CreateDirectory

CreateDirectory(PathName)

Creates a directory.

Returns true if successful, otherwise false.

Remarks: this function needs high privileges to be performed.

DeleteDirectory

DeleteDirectory(PathName)

Deletes a directory.

Returns true if successful, otherwise false.

Remarks: this function needs high privileges to be performed.

GetLongPathName

GetLongPathName(PathName)

Returns the long path name if successful, otherwise null.

GetShortPathName

GetShortPathName(PathName)

Returns the short path name if successful, otherwise null.

Conclusions

As I already said in this article, I can't predict if this scripting language will be of any interest
for the users, but it was fun implementing it and it really makes the CFF Explorer stand apart
from other editors, in my opinion. And maybe someone will find it useful after all.

I would have liked to implement many more functions and additions to the Lua syntax, but fact
is that I've worked on this feature long enough for its first version: I really felt it was release-
ready.

Daniel Pistelli

